Biometrics, Tokens, & Public Key Certificates

The Merging of Technologies

L. Reinert
S. Luther
Biometrics, Tokens, & Public Key Certificates

The Merging of Technologies

Topics

Authentication Background (Tokens, Public Keys, Certificates, and Biometrics)

Combining Tokens, Public Key, and Certificates

X.509 Certificate Background

Public Key Infrastructure (PKI) Overview

X.509 Attribute Certificates

A Proposed Authentication Information Attribute

An Example Implementation (Tokeneer)
User Identification Verification Principles

What you have (Tokens)

What you know (passwords, memory phrases, etc.)

What you are (Biometrics)

Any data used to support these is considered Authentication Information (AI)

How to glue them together?

This is one possible solution, but first some background........
Tokens (Smartcards)

Small, portable, and potentially cost effective
Typically have a primitive OS which supports a password login feature
Capable of providing Public Key and Symmetric Key Encryption
RSA, Elliptic Curve, DES, etc.
And some support a Hashing function (DES, SHA1, etc.)
Can protect stored data via encryption and reverse engineering techniques
Relatively slow, however improvements will be relatively rapid
Capable of storing (relatively small amounts of) Data
Can support Multiple Applications (via MultOS or Card Java)
Growing Market: Wide variety of applications.
Public Key

Can be used to provide Confidentiality (via Key Exchange)
Can be used to support Authentication (via Digital signatures)
Can be generated on the Token or at a Trusted source (i.e. a CA)
Secret Component must be held securely by the Entity to which it belongs

RSA is the current standard commercial implementation
KEA/DSA are the government (standards?)
Typically the strength of the algorithm is implied by the bit length associated with the key (i.e. 1024 bit RSA is harder to break than 512 RSA)
The larger the bit length, the more storage space the key takes, and the longer the processing time.
Certificates

Can be used to provide an authenticated Identity
Requires a Trusted (Certificate) Authority (CA) to sign the certificate

Can be public key or signature certificates
Typically managed by having the CA produce Certificate Revocation Lists (CRLs)

Certificates typically contain the following information:

- Name (identity) of the entity it’s associated with
- Issuer’s name (i.e. the CA)
- Version
- Serial Number
- Validity dates (from.. to.., typically valid one year or more)
- Algorithm identifier
- Public Key Encryption Key or Public Signature Key Data
- CA’s Signature
Tokens + Public Key + Certificates

Capable of providing mutual verification per FIPS Pub 196\[8\] (i.e. challenge/response)

Capable of securely holding User Authentication Information (Passwords, Biometrics, etc.)

(Data)Kn

Capable of securely transferring the Authentication Information to authenticated entities
Biometrics

Many different types (Fingerprint, Facial, Retinal, Voice, etc.)

All have pros and cons which fit into differing system requirements.

None are (by themselves) perfect I&A

Most follow this scenario:
Biometrics (Continued)

Current systems are typically small, isolated, and proprietary

Work is being done towards commonality

Needs a support infrastructures

Infrastructures required could parallel Public Key Infrastructures (PKI)

But would a Biometric Infrastructures (or AI Infrastructures) Work???
Public Key Infastructures

Built on a hierarchical “Trust” model
Mature technology
Maturing Business Model (E-Cash/Internet financial transactions)
Keys can be generated locally (in the Token) or at the CA.
CA must sign Certificates, Users must verify the CA’s Signature
Revocation Certificates are placed on a Certificate Revocation List (CRL)
Fairly complex key management
Security Policy Management added to handle differing systems
X.509 Public Key Certificates

Of the several types, X.509 is most prevalent in current systems
X.509 is an International Telecommunication Union (ITU) Specification
It is equivalent to ISO/IEC 9598-8 [5], an International Standards Organization Specification

Public Key Certificates are meant to be “public” i.e. not Confidential
Claimed Identity provided by the subject field
Identity and Public key are validated by verifying the CA signature, however....
Identity proven only after successful Challenge/Response

V3 extensions were meant to add addition fields (attributes)
without modifying the base definition [5]:
Authentication Information could go here, but.....

Are you concerned about Confidentiality?
Attributes

Describe a characteristic of the object to which it references [3]

Basic Type (id) and Value construct
Assign a unique identifier
Register with an ISO registered approval authority (ASNI)

X.501 ANS.1 definition[2]
AttributeTypeandValue::=SEQUENCE
 type ATTRIBUTE.&id ({SupportedAttributes});
 value ({ATTRIBUTE.&Type({SupportedAttributes}){@type}})

Some currently defined attributes[4]

 Name
 Address
 Phone
 Email address
 Company Name
 Role
 Clearance[5]

What is not clearly defined

 Authentication Information (AI), including Biometrics
 AI Identifiers
 AI Parameters
X.509 Attribute Certificates [5]

Attribute certificates are used to convey a set of attributes along with a Public Key Certificate identifier or entity name. [5]

The attributes were placed in a separate structure to maintain conformance with existing international standards (X.509) [5].

Also described in X9.57 an ABA/ANSI specification[8].

Construct is similar to the X.509 Public Key Certificate, except is specifically set up to hold attributes without the public key.

Introduces an Attribute Authority to create/control Attribute Certificates.
Authentication Information Attribute for the Attribute Certificate

Authentication Information (AI) properties:

 - Flexible
 - Open
 - Generic
 - Support different AI’s
 - Support multiple AI’s
 - Support unique parameters
 - Expandable for future technologies
 - Support compatibility determination
The AI Attribute should define[14]:

Authentication Method (ECMA 2.19 [11])
 - Passwords
 - Token
 - Immutable Characteristics (Biometrics)
 - Trusted Third Party
 - Context (Location)

Processing Information
 - Process Identifier
 - Version
 - Parameters

Matching Information
 - Matching Identifier
 - Version
 - Parameters

Authentication Data
Possible Authentication Information ASN.1[2] Description

authenticationInfo ATTRIBUTE ::= {WITH SYNTAX
 AuthenticationInfo, ID id-at-TBD}

AuthenticationInfo ::= SEQUENCE{
 authenticationMethod[0] AuthenticationMethod, -- defined in ECMA.219
 exchangeAI[1] AuthMparm, -- the data, as defined in ECMA.219
 biometricInfo BiometricInfo OPTIONAL -- defined in section 5.2.2 of this document
}

BiometricInfo ::= SEQUENCE{
 processingInfo ProcessingInfo OPTIONAL,
 matchingInfo MatchingInfo
}

ProcessingInfo ::= SEQUENCE{
 processingID OBJECT IDENTIFIER, -- Registered by implementation
 processingParmsAuthMparm OPTIONAL, -- Defined in ECMA.219
 processingVersion Version
}

MatchingInfo ::= SEQUENCE{
 matchingID OBJECT IDENTIFIER, -- Registered by implementation
 matchingParmAuthMparm OPTIONAL, -- Defined in ECMA.219
 matchingVersion Version
}

--- ECMA.219 definitions
AuthMparm ::= CHOICE{
 printableValue [0] Printable String,
 integerValue [1] INTEGER,
 octetValue [2] OCTET STRING,
 bitStringValue [3] BIT STRING,
 otherValue [4] ANY
} -- defined by authenticationMethod (i.e. the AI)

-- X.509 Definitions [5]
Version ::= INTEGER{v1(0)} -- Add versions as needed --
Attribute Authorities

Attribute Authorities perform similar functions as Certificate Authorities, but specifically are meant to support Attribute Certificates.

May or may not be the same physical entity as the CA.
Using Attribute Certificates to provide Confidentiality

A Token Based Scenario (Based upon the Tokeneer system [15])

Step1: The System Enrollment Process
Step2: The Local Enrollment Process

Local Enrollment Station (the “host”)
FIPS Pub 196\cite{8} based Mutual Authentication Protocol

Where:

\[
\begin{align*}
\text{Token}_{SH1} &= R_S \parallel [\text{Text}_1] \\
\text{Token}_{HS} &= R_H \parallel [R_S] \parallel [S] \parallel [\text{Text}_3] \parallel sS_H(R_H \parallel R_S \parallel [S] \parallel [\text{Text}_2]) \\
\text{Token}_{SH2} &= [R_S] \parallel [R_H] \parallel [H] \parallel [\text{Text}_5] \parallel sS_S(R_S \parallel R_H \parallel [H] \parallel [\text{Text}_4]) \\
\text{Text} &\text{: Other data to be appended, such as an attribute certificate (e.g. Text 2) }
\end{align*}
\]

Note:
Attribute certificate can be encrypted as Text2 and sent here, only after the host is authenticated to the token.
Step 3: The Domain Entry: Process User Verification

- User Verification
- Biometric Scanner
- Biometric Livescan
- Timestamp/Privilege Certificate
- Mutual Authentication Protocol
- ID Station (the “host”)

TOKENEER
Step 4: User Verification: Workstation Login

Mutual Authentication Protocol

Login Token

Password from User

Timestamp

Work Station (the “host”)

TOKENEER
Variations on the Token Based Scenario

Trusted Registry

Biometric template response is sent to a central “Trusted Registry”.
Biometric verification performed at the registry.
Challenge/Response could be between token and the Trusted Registry.
Similar to the Trusted Third Party (TTP) scenario.

Local Verification

Attribute certificate is stores in a local database.
Local host verifies the signature on the attribute certificate before verification.
Local Host performs biometric verification and token challenge/response.

Token Verification

Host sends biometric scan to token, token performs biometric verification.
This scenario assumes the token can be trusted more than the host.
Not feasible now, but newer generation of token may be capable.
Issues

Token’s cost for large scale deployment

Token processing time (Total processing time should be < 2 seconds)

Token storage (Attribute Certificate could be stored in Host system)

Infrastructure’s cost and complexity

Workstation Trust

Consensus on a Authentication Information Attribute

Register the AI Attribute with ANSI
Conclusions

Combining Biometrics, Tokens, and Certificates is possible with today’s technology

A new attribute should be created to handle Authentication Information

An Infrastructure must be created to support Authentication Information

The Tokeneer system is a testbed specifically designed to prototype this functionality
Reference Documents

