Enabling Identity Assurance

Case Study: PIV, RT, & TWIC

Biometric Consortium Conference
Standards Session

Cathy Tilton
VP, Standards & Emerging Technologies

September 12, 2007

PIV Program Overview

- Implements Homeland Security Presidential Directive (HSPD) 12
 - “Policy for a Common Identification Standard for Federal Employees and Contractors”
- NIST developed specifications
 - FIPS 201: Personal Identity Verification of Federal Employees & Contractors
 - Consists of two parts: PIV-I and PIV-II
 - PIV-I – Control and security objectives of HSPD-12
 - PIV-II – addresses technical interoperability
 - NIST Special Pubs (samples)
 - SP800-73 – Interfaces for Personal Identity Verification
 - SP800-76 – Biometric Data Specification for PIV
 - SP800-78 – Cryptographic Algorithms and Key Sizes for PIV
 - SP800-96 – PIV Card/Reader Interoperability Guidelines
Enabling Identity Assurance

Requirements

- Functional:
 - Background checks (identity proofing & registration)
 - Visual authentication
 - Automated fingerprint verification
- Achieve interoperability
- Maximize performance in terms of matching accuracy
- Maintain source image quality
 - Minimize use of compression
- Security + Privacy
- Few requirements for operational use
 - i.e., logical/physical access using the PIV card
- Facial recognition use supported, but optional

PIV – Notional Model
PIV Card data model

<table>
<thead>
<tr>
<th>Content</th>
<th>ID</th>
<th>Size (B)</th>
<th>Access</th>
<th>Interface</th>
<th>M/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card Capability Container</td>
<td>0xDB00</td>
<td>266</td>
<td>Read Always</td>
<td>Contact</td>
<td>M</td>
</tr>
<tr>
<td>CHUID</td>
<td>0x3000</td>
<td>3377</td>
<td>Read Always</td>
<td>Contact & Contactless</td>
<td>M</td>
</tr>
<tr>
<td>PIV Auth Cert</td>
<td>0x0101</td>
<td>1651</td>
<td>Read Always</td>
<td>Contact</td>
<td>M</td>
</tr>
<tr>
<td>Fingerprints (2)</td>
<td>0x6010</td>
<td>7768</td>
<td>PIN</td>
<td>Contact</td>
<td>M</td>
</tr>
<tr>
<td>Printed Info</td>
<td>0x3001</td>
<td>106</td>
<td>PIN</td>
<td>Contact</td>
<td>O</td>
</tr>
<tr>
<td>Facial Image</td>
<td>0x6030</td>
<td>12704</td>
<td>PIN</td>
<td>Contact</td>
<td>O</td>
</tr>
<tr>
<td>Dig Signature Cert</td>
<td>0x0100</td>
<td>1651</td>
<td>Read Always</td>
<td>Contact</td>
<td>O</td>
</tr>
<tr>
<td>Key Mgmt Cert</td>
<td>0x0102</td>
<td>1651</td>
<td>Read Always</td>
<td>Contact</td>
<td>O</td>
</tr>
<tr>
<td>Card Auth Cert</td>
<td>0x0500</td>
<td>1651</td>
<td>Read Always</td>
<td>Contact</td>
<td>O</td>
</tr>
<tr>
<td>Security Object</td>
<td>0x9000</td>
<td>1000</td>
<td>Read Always</td>
<td>Contact</td>
<td>M</td>
</tr>
</tbody>
</table>

Some decisions on biometrics use

- **On-card**
 - Biometrics are not encrypted
 - Biometrics are PIN protected
 - Biometrics are stored on contact side only (contactless access prohibited)
 - 2 fingerprint templates, 1 (opt) face image
 - Digital signature on CBEFF structure containing biometrics

- **Profiles created for all 4 INCITS standards**
 - Further constrained implementation to improve interoperability and control performance
 - Example: minutiae location/reporting

- **Certification program**
 - Includes template generators & matchers (“interoperable groups”)
Standards

Standards Usage

- **INCITS 398**: Envelope for biometric data stored on-card or retained in DB
- **INCITS 378**: Fingerprint template format for on-card storage
 - Use decided based on MINEX testing
- **INCITS 385**: Facial image format for on-card storage
 - Full frontal
 - JPEG 2000 (ROI allowed, inner ≤ 24:1), JPEG for legacy images only
- **INCITS 381**: Finger image format for retained images
 - Individual fingers + opt. slaps

Standards

Enabling Identity Assurance

<table>
<thead>
<tr>
<th>Standards</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCITS 378</td>
<td>Fingerprint template format for on-card storage</td>
</tr>
<tr>
<td>INCITS 385</td>
<td>Facial image format for on-card storage</td>
</tr>
<tr>
<td>INCITS 381</td>
<td>Finger image format for retained images</td>
</tr>
<tr>
<td>INCITS 398</td>
<td>Envelope for biometric data stored on-card or retained in DB</td>
</tr>
<tr>
<td>ITL 1-2000</td>
<td>INCITS 381, JPEG2000</td>
</tr>
<tr>
<td>NFIQ, WSQ</td>
<td>INCITS 398</td>
</tr>
<tr>
<td>EFTS App F</td>
<td>INCITS 385, JPEG2000</td>
</tr>
<tr>
<td>EFTS App F, single finger</td>
<td>INCITS 378, JPEG2000</td>
</tr>
</tbody>
</table>
Standards Usage (cont’d)

- ANSI/NIST ITL1-2000
 - Finger image format for background checks (Slaps: Type-14 / Rolls: Type-4)
- EFTS, App F
 - Tenprint capture device certification
 - Mod for single-finger devices for physical/logical access
- NISTIR 7151 (NFIQ)
 - Fingerprint quality checks at registration
- IAFIS-IC-0110 (V3): WSQ
 - Compression of finger images

CBEFF Structure

- PIV defined their own “Patron Format” & Signature Block

<table>
<thead>
<tr>
<th>HEADER (SBH)</th>
<th>BIOMETRIC DATA BLOCK (BDB)</th>
<th>SIGNATURE (SB)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIV header (800-76, Sec 6)</td>
<td>INCITS *</td>
<td>PIV specific (FIPS 201, 4.4.2 SP800-78)</td>
</tr>
</tbody>
</table>
Profiling example – INCITS 378

- Two fingers per BDB (single CBEFF structure)
- No extended data
- Rules for reporting minutiae type, direction
- Quality algorithm & calculation for multiple samples
- Mandatory use of optional fields (non zero fill)
 - e.g., product ID
- Record size limits

Registered Traveler (RT)
Enabling Identity Assurance

RT Program Overview

- A privilege program that expedites the passage of travelers through participating airports
- Uses smart cards and biometrics to assure a person’s identity at the airport
- Participation requirements enrollment with a Service Provider
- TSA will perform a Security Threat Assessment
- A Central Information Management System (CIMS) will
 - Ensure interoperability across Service Providers
 - Generates the biometric templates for the RT card
 - Digitally signs the authentication data on the RT card
 - Maintains and propagates the CRL
- RT is a public/private partnership
- Fully fee funded

Requirements

- Interoperability among service providers
- Reliable biometric verification at security checkpoints
- Iris capture/use at traveler discretion (SPs must support)
- Facial image not intended for use in automated facial recognition
- Biometric support for identity proofing/vetting
 - Deduplication
 - Security Threat Assessment (STA)
- Verification FRR <= 1% at a FAR of 1%
- Card size/space constraints
Enabling Identity Assurance

RT Process

Pre-Enrollment (Optional)
- Provide biographic information
- Pay fees
- Receive instructions

Capture Biographics
- Enter biographic data
- Verify correct pre-enrollment data

Identity Proofing
- Scan identity documents
- Validate I-9 documents

Identity Investigation
- Biometric duplicate checks
- Criminal history checks
- Name based checks

Capture Biometrics
- Capture ten fingerprints
- Capture iris (optional)
- Capture photo (not to be used for verification)

Vetting Complete
- Delete biographic data
- Generate templates
- Sign card data

Card Issuance
- Produce card
- Provide to traveler

Operational Usage
- Traveler presents card at airport

Capture Biometrics
- Ten fingerprints
- Iris (optional)
- Photo (not to be used for verification)

RT Interoperability Specification

- Developed by the RTIC (approved by TSA)
 - 68 Airports/Airport Authorities
 - 47 Service Providers
- Objective
 - Develop the common set of technical standards and processes necessary for an open, secure and industry-driven RT program
- Joint process – Government & Industry
 - War room environment

Spec publicly available: http://www.rtconsortium.org/
Enabling Identity Assurance

RT distributed processing

Airport 1
- EP1
- VP1

Airport 2
- EP2
- VP2

5 SPs registered, 2 opnl
14 sponsors (3@JFK)

CIMS
- Quality/validity checks
- De-duplication
- Template generation
- Payload creation/signing
- Revocation mgmt

AFIS
DB
CA

TSA

STA
Adjudication
Revocation

Relationship to PIV

- RT spec leverages PIV spec
- Differences:
 - RT participants do not use PINs
 - RT participants will optionally use iris to authenticate themselves
 - The RT card contains up to 4 fingerprint templates
 - Initially, the RT spec supports contact only
 - The RT card is not a federal credential
- Similarities:
 - RT uses the same fingerprint capture and quality management methods
 - RT uses the same PIV card edge interface
 - The RT spec allows the RT app to co-reside with PIV apps if necessary
Enabling Identity Assurance

RT card data model

<table>
<thead>
<tr>
<th>Content</th>
<th>Size (B)</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTUID</td>
<td>1410</td>
<td>Read Always</td>
</tr>
<tr>
<td>Fingerprint I</td>
<td>2004</td>
<td>Mutual Authenticate</td>
</tr>
<tr>
<td>Fingerprint II</td>
<td>2004</td>
<td>Mutual Authenticate</td>
</tr>
<tr>
<td>Iris Biometrics</td>
<td>8008</td>
<td>Mutual Authenticate</td>
</tr>
<tr>
<td>Facial Image</td>
<td>17104</td>
<td>Mutual Authenticate</td>
</tr>
<tr>
<td>Personal Data</td>
<td>74</td>
<td>Mutual Authenticate</td>
</tr>
<tr>
<td>RT Preferences</td>
<td>8</td>
<td>Read Always</td>
</tr>
<tr>
<td>ICAO Security Object</td>
<td>1504</td>
<td>Read Always</td>
</tr>
</tbody>
</table>

Some decisions on biometrics use

- One size does not fit all
 - Multiple modalities broadens potential user base
 - Requires additional container, different container sizing
 - Challenge for iris storage – size constraint + interoperability – led to selection of segmented polar format
 - 4 fingerprints reduces transactional FRR
- PINs are not operationally practical for the traveling public
 - Too frequently forgotten
 - Add to throughput time
- Protection mechanisms:
 - Signature at container level (ICAO approach)
 - Mutual authentication (symmetric key) to read
 - Held in HSMs at verification stations (kiosks)
Standards

- **Enabling Identity Assurance**

CIMS
- TSA
- STA
- Adjudication
- Revocation

- **ITL 1-2000/7**, **NFIQ**, **WSQ**
- **GJXDM**
- **INCITS 385**, **ISO 19794-6 (R)**
- **JPEG2000**, **JPEG**
- **EFTS App F**

- **INCITS 378**
- **ISO 19794-6 (P)**
- **INCITS 385**
- **INCITS 398**

- **5 SPs registered, 2 opnl**
- **14 sponsors (3@JFK)**

Biometrics/standards used in RT

- **Fingerprints**
 - Ten slap prints at enrollment
 - Submitted as ANSI/NIST ITL1-2000 Type-14 XML records*
 - Four fingerprints on RT card - INCITS 378-2004

- **Iris**
 - Optional capture of two irises
 - Rectilinear format for enrollment and storage at CIMS
 - Submitted as ANSI/NIST ITL1-2007 (draft) Type-99 XML records*
 - ‘Unsegmented’ polar image format for RT card
 - Compliant with ISO/IEC 19794-6:2005

- **Face**
 - Captured at enrollment
 - ANSI INCITS 385-2004, basic format
 - Submitted as ANSI/NIST ITL1-2007 (draft) Type-99 XML record*
 - Stored on card, NOT used for authentication!

* binary data is base-64 encoded
Enabling Identity Assurance

Standards usage

- Defined in RTIC Interoperability Specification
- Enrollment requests
 - XML messaging
 - Based on GJXDM & ANSI/NIST ITL1-2007 – Neither completed at the time!
 - Some deviations with final versions (i.e., NIEM) therefore exist
- CBEFF
 - Used modified PIV patron format
 - FASC-N & Validity period not used (zero filled)
 - No security block (redundant)
- Iris formats
 - Rectilinear at enrollment
 - Segmented polar on card
 - Quality extensions
- Profiles
 - Leveraged PIV where possible (i.e., INCITS 378)
 - RT specific profile of 19784-6

Factors

- Need for iris (and face) sample quality standards!
 - Becomes critical in a heterogeneous, multi-provider, distributed environment
- Card size constraints drive many biometric decisions
 - e.g., interoperable iris format
- Privacy considerations are critical
 - Drives protection mechanisms/schemes and many other design decisions
RT Kiosks

Transportation Worker Identification Credential (TWIC)
TWIC Program Overview

- Multi-phase program
 - Current focus on maritime operations
 - Joint TSA/Coast Guard initiative
- Goals:
 - Positively identify authorized individuals who require unescorted access to secure areas of the nation’s maritime transportation system;
 - Determine the eligibility of an individual to be authorized unescorted access to secure areas of the maritime transportation system;
 - Enhance security by ensuring that unauthorized individuals are denied unescorted access to secure areas of the nation's maritime transportation system; and,
 - Identify individuals who fail to maintain their eligibility qualifications after being permitted unescorted access to secure areas of the nation's maritime transportation system and revoke the individual's permissions.

Applications

- App1 = PIV
- App2 addresses maritime operational use
 - Final specification not yet published!
 - National Maritime Security Advisory Committee (NMSAC) chartered to develop contactless biometric/reader specification
 - Existing standards determined “not suitable for application in the maritime environment”
- Considerations
 - Operational environment
 - Cost to port operators (including small/vessel operators)
 - Privacy considerations
 - Key management
 - Throughput
- Compatibility with the ILO Seafarer’s ID was also considered
TWIC Process

1. Sponsor
2. Transportation Workers
3. Enrollment Centers
4. Identity Management System (IDMS)
5. Card Production Facility
6. Database Queries
 - 1:n biometric search
 - Name-Based Terrorist-Focused Risk Assessment
 - Office of National Risk Assessment (ONRA)
7. Transportation Workers
8. Local Facilities

Requirements

- Support for all MARSEC levels
- Fixed and portable, network connected & standalone readers
- Contactless operation
- No covert read of biometric
- PIV compatible
- Outdoor operation
- Support use for physical access control
- 3 second transaction time
- 1% EER (3 attempt FRR)
- Preference for liveness detection
TWIC data model

<table>
<thead>
<tr>
<th>Content</th>
<th>Size (B)</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned CHUID</td>
<td>64</td>
<td>Read Always</td>
</tr>
<tr>
<td>TPK (contact only)</td>
<td>40</td>
<td>Read Always</td>
</tr>
<tr>
<td>Signed CHUID</td>
<td>3000</td>
<td>Read Always</td>
</tr>
<tr>
<td>Cardholder Fingerprints (encrypted)</td>
<td>2500</td>
<td>Read Always</td>
</tr>
<tr>
<td>Security Object</td>
<td>920</td>
<td>Read Always</td>
</tr>
</tbody>
</table>

Some decisions on biometrics use

- No PINs
- Biometric verification via ISO 14443 contactless interface
- Encrypted biometrics on contactless side
 - Basic access control via mag stripe, contact interface, or central site
 - Card unique keys
- No face on contactless side – just fingerprint templates
- Support both PIV & TWIC card apps (modes), selectable
- Allow for “operational biometrics”
 - Not stored on card
 - Addressed in local operator’s security plan
Enabling Identity Assurance

Operational use – physical access control

Standards usage

- Same as PIV, plus:
 - INCITS 383: Biometric Profile – Interoperability and Data Interchange – Biometrics-Based Verification and Identification of Transportation Workers
 - INCITS 378 & CBEFF on contactless side (TWIC app)
Comparison

<table>
<thead>
<tr>
<th>Program</th>
<th>Modes</th>
<th>Qty</th>
<th>Encry</th>
<th>Sign</th>
<th>Interface*</th>
<th>Prot. Mech.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIV</td>
<td>FP-temp Face</td>
<td>2-4</td>
<td>N</td>
<td>Y</td>
<td>C (C/L future)</td>
<td>PIN</td>
</tr>
<tr>
<td>RT</td>
<td>FP-temp Iris-polar Face</td>
<td>2-4</td>
<td>N</td>
<td>Y</td>
<td>C (C/L future)</td>
<td>Mut. Auth.</td>
</tr>
<tr>
<td>TWIC</td>
<td>FP-temp Face</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>C/CL</td>
<td>BAC/TPK**</td>
</tr>
<tr>
<td>ePass</td>
<td>Face (opt) Iris (opt)</td>
<td>1</td>
<td>N</td>
<td>Secty Obj.</td>
<td>CL</td>
<td>BAC/ Mut. Auth.</td>
</tr>
</tbody>
</table>

* C=contact, CL=contactless
** BAC=Basic Access Control; TPK=TWIC Privacy Key

CBEFF format evolution

- **INCITS 398 Patron Format A**
 - Basis of
 - Used by PIV Patron Format
 - Profiled by RT variant
 - Used by TWIC
Conclusions

- Specific program requirements drive selection and use of standards
- Even similar type programs (e.g., credentialing) frequently have different needs
- Use of standards can support interoperability needs
- Standards typically require tailoring (profiling) for use in a particular environment/domain of use
- Some standards are becoming “standard” (at least in the US)
 - i.e., INCITS 378, 385
 - “Piggyback effect”: Once one big program makes the investment, others follow suit and reuse designs

Conclusions (cont’d)

- Law enforcement & non-law enforcement communities have different sets of standards
 - Many programs require both (i.e., law enforcement for background checks & others for other functions)
 - These are becoming somewhat more compatible over time (e.g., Type-99 record)
- Timing/availability of standards/revisions influence selection/use
 - PIV warning regarding revisions:
 - “…revisions are irrelevant to PIV; however implementations should respect the version number…”
 - RT use of draft ITL1-2007 (Type-99, XML)
Enabling Identity Assurance