Threat Analysis

How Can We Compare Different Authentication Methods?

Philip Statham - CESG Biometrics Programme Manager

philip.statham@cesg.gsi.gov.uk
Outline

• Authentication mechanisms, parameters and binding
• Strengths and weaknesses of Password, Token and Biometric authentication mechanisms
• Comparing authentication mechanisms
• Combining authentication mechanisms
• CESG biometric authentication policy advice for UK Government
Classic Authentication Paradigm

- Something you know - Password
- Something you have - Token
- Something you are - Biometric

Inevitable Follow-on Questions

- Which is best?
- Which is most secure?
- How can we compare them?
Key Security Issue for all authentication mechanisms is **Binding**

- The confidence you can have that a person presenting the credential is who they claim to be
- What limits the Binding strength?
 - Fundamental – raw entropy of the mechanism
 - Physical linkage of credential to person
 - Procedural/Human weaknesses
 - Technical vulnerabilities of mechanism
- In practice, human and procedural weaknesses often dominate **Hint: Biometrics helps here**
Threats to Binding Strength

- **Fundamental Discrimination (Entropy) limits**
 - Discrimination, “raw” entropy – ability of mechanism to distinguish between individuals
 - The exploitation avenue for casual (low or zero-effort) attacks

- **Human and procedural failures** – reduces entropy, sometimes to zero
 - Social engineering
 - “Easy” secrets
 - Failure to guard secrets
 - Corrupt users/administrators

- **Technical attacks**
 - Exhaustion attacks against authentication mechanism
 - Exploitation of vulnerabilities of the authentication mechanism
 - Indirect attacks against supporting infrastructure
 - Transmission paths
 - Databases
Security is Multi-Dimensional

Brief Look at the different mechanisms
Passwords

• Discrimination high
 – Large password space – high entropy
• Technically strong
 – Long string = High entropy, very long time to exhaust
 – Cryptographically strong algorithms – can’t be reverse engineered
• Procedurally weak
 – Short passwords = Low entropy
 – Easy-to-guess passwords = Low/zero entropy
 – Written down = Zero entropy
 – Divulged to colleagues = Zero entropy
 – Vulnerable to social engineering attacks = Zero entropy
• Password security paradox
 – Increased technical strength ▶ decreased procedural strength
Tokens

- Discrimination very high – token store “password”
- Technically (quite) strong
 - Difficult to copy – physical barriers
 - Very difficult to modify – physical and cryptographic barriers
 - Attacks needs considerable expertise and specialised equipment
- Procedurally weak
 - Loss
 - Theft
 - But at least you know when it’s missing!
Biometrics

• Discrimination medium – high (depending on modality)
 – Entropy limited by FAR
 • N.B. Not directly equivalent to password entropy because you can’t mount a simple exhaustion attack

• Technical strength medium
 – Spoofing
 – Reverse engineering of stored templates
 – Capture of stored images

• Procedurally strong
 – Not so reliant on human discipline
 – Human failures don’t weaken the binding in the same way as for passwords and tokens
Comparing Authentication Mechanisms

Binding strength is a composite of the component factor strengths

How can we model binding strength?
Composite Binding Strength

Model 1: Aggregate the component strengths

Sanity Check: If one component has zero strength, binding strength reduces to sum of other component strengths !!!!!!!!
Composite Binding Strength

2nd Model: Aggregate the component weaknesses

Weakness = 1 / Strength

Binding Weakness

Discr. Weakness Tech. Weakness Procedural Weakness

Sanity Check:

If one component has zero weakness (i.e. perfect strength), the overall binding weakness reduces to sum of other component weaknesses.

If one component has much greater weakness than the others, it dominates the overall binding weakness.

these seem intuitively right.
How do we measure the parameters?

1. Discrimination Strength (Entropy)

<table>
<thead>
<tr>
<th>Method</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passwords</td>
<td>Raw Entropy/ number of attempts in a defined time period</td>
</tr>
<tr>
<td>Tokens</td>
<td>Number of distinct tokens</td>
</tr>
<tr>
<td>Biometrics</td>
<td>FAR / number of different attempts feasible.</td>
</tr>
</tbody>
</table>
How do we measure the parameters?

2. Technical Strength

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assessment Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passwords</td>
<td>Assess through security evaluation process.</td>
</tr>
<tr>
<td>Tokens</td>
<td>Results expressed in quantised levels (EALs, or some other scale)</td>
</tr>
<tr>
<td>Biometrics</td>
<td></td>
</tr>
</tbody>
</table>
How do we measure the parameters?

3. Procedural Strength

Hard. May depend on environmental factors such as site security and staff discipline. After the fact audit?

Factors Include:

<table>
<thead>
<tr>
<th></th>
<th>length, randomness, physical security, frequency of change, enforcement policy, user discipline, no of users.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passwords</td>
<td></td>
</tr>
<tr>
<td>Tokens</td>
<td>physical security, user discipline, no of users</td>
</tr>
<tr>
<td>Biometrics</td>
<td>Inherently good, maybe can disregard?</td>
</tr>
</tbody>
</table>
Example

Compare Password and Biometric “Strength of Function” through consideration of entropy
Password SOF

• SOF relates to probabilistic mechanisms
• For passwords this maps to the probability of guessing the password
 – Password SOF defined by entropy
 • e.g. 4 digit PIN has raw entropy of 10000
 • Real entropy may be less (restricted subsets, non random choice etc.)
 • Also effective entropy reduced by multiple attempts
Table A.1 – Estimated Password Guessing Entropy in bits vs. Password Length

<table>
<thead>
<tr>
<th>Length Char.</th>
<th>No Checks</th>
<th>Dictionary Rule</th>
<th>Dict. & Comp. Rule</th>
<th>Randomly Chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Chosen</td>
<td>94 Character Alphabet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>17</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>20</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>22</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>26</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>28</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>30</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>32</td>
<td>38</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>33</td>
<td>34</td>
<td>40</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>36</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>38</td>
<td>38</td>
<td>44</td>
<td>27</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>40</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>46</td>
<td>52</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>56</td>
<td>56</td>
<td>62</td>
<td>45</td>
</tr>
</tbody>
</table>
Biometric Entropy and Password Equivalence

- Biometric authentication has a probability of chance (false) match, given by the FAR
- So we infer that biometric entropy is related to FAR (for authentication)
- How do we compare biometric entropy to password entropy?
 - Direct equality e.g. FAR = PW raw entropy?
 - Makes no allowance for different potential for retries in the 2 cases
- Need to equate real rather than raw entropies
Password/Biometric Comparison
Illustrative Example

• Password – 4 Digit PIN
 – Raw entropy 10000
 – Real entropy ~5000 (see CC V2 CEM Annex B.8.3)
 – Assume 100 retries (over period of time)
 – Chance of success 1 in 50
 – N.B. CC CEM V2 B.8.3 rates this as **SOF Basic**

• Biometric – FAR 1%
 – Raw entropy 100
 – Real entropy = 100 / no of attempts possible
 – Same order of magnitude as 4 digit PIN example
Common Criteria - Common Methodology for Information Technology Security Evaluation

Biometric Evaluation Methodology Supplement [BEM]

Table 11: SOF defined in Terms of FAR

<table>
<thead>
<tr>
<th>Strength of Function Level</th>
<th>Maximum FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOF-Basic</td>
<td>0.01 (1 in 100)</td>
</tr>
<tr>
<td>SOF-Medium</td>
<td>0.0001 (1 in 10,000)</td>
</tr>
<tr>
<td>SOF-High</td>
<td>0.000001 (1 in 1,000,000)</td>
</tr>
</tbody>
</table>
In Summary

Pros and Cons of the Component Approach

- Accounts for all elements that contribute to security
- Provides a more realistic view of the actual security achieved
- Avoids undue emphasis on one element of the security picture

But -

- Demands reappraisal of established security paradigms
- Hard to quantify procedural elements
- Difficult to develop / agree comparable scaling of axes.
- Results may conflict with previous cultural “wisdom”

Work in progress
Current UK Government Thinking on Authentication Policy

Developed by Brian Holman
CESG ID&A Policy Developer

brian.holman@cesg.gsi.gov.uk
The Password / Biometric Trade-off

Government Health Warning

This approach has been developed for internal Government Users (employees).
It was not developed with citizen-Government authentication in mind, but the approach may be useful for future e-government authentication

CAUTION
How should we combine Passwords and Biometrics?

Approach based on existing UK Government Risk Assessment Methodology –

HMG InfoSec Standard 1 (IS1)
Risk Assessment – IS1

Threats
- number of attackers
- type of attackers
- opportunity
- consequence of failure

Mitigating Factors
- environmental factors
- technical factors
- level of monitoring
- available assurance

Residual Risk
- 0
- 10
- 21
IS1 Password Length vs. Residual Risk

Typical Results

Residual Risk = 12 => 4 digit PIN
Residual Risk = 14.5 => 8 characters
Residual Risk = 17.5 => 12 characters
Overview of Steps

• Use IS1 to work out Residual Risk for given application
• Use existing policy advice to determine authentication password length requirement
• Use new policy advice to determine password length reduction allowed by introduction of biometric authentication.
New Policy - Trade off Password Length by adding Biometrics

• We invented a trade-off rule that simply “feels about right” – calibrated against hypothetical examples
• Like IS1 itself, it’s a pragmatic approach – don’t look too closely at the theory
Trading off Passwords and Biometrics

- Adding a biometric system reduces the Level of Residual Risk
- As we already have policy for assessing password length against Residual Risk, then we can use the same approach to translate reduction in Residual Risk into reduction in password length
- So the question resolves to: what is the reduction in Residual Risk provided by the biometric authentication?
Trading off Passwords and Biometrics

• The Risk Level reduction “formula” used is based on a combination of:
 – The FAR of the biometric mechanism
 – A formal Common Criteria assurance measure
 – A Common Criteria Vulnerability Assessment level – the latter two to ensure there is no obvious weakness such as an easy bypass
Biometric Risk Level Reduction

<table>
<thead>
<tr>
<th>Reduction in Risk Level</th>
<th>FAR</th>
<th>EAL</th>
<th>Vulnerability Assessment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 in 10(^5)</td>
<td>5</td>
<td>AVA_VLA.3</td>
</tr>
<tr>
<td>4</td>
<td>1 in 10(^4)</td>
<td>4</td>
<td>AVA_VLA.2</td>
</tr>
<tr>
<td>3</td>
<td>1 in 10(^3)</td>
<td>3</td>
<td>AVA_VLA.2</td>
</tr>
<tr>
<td>2</td>
<td>1 in 10(^2)</td>
<td>2</td>
<td>AVA_VLA.1</td>
</tr>
<tr>
<td>1</td>
<td>1 in 10(^2)</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>
Trading off Passwords and Biometrics

Examples

• A good Biometric, i.e. a FAR better than 1 in 10^5, assured to EAL5, will reduce a Password typically by 6 characters

• A poor biometric, i.e. FAR ~100, assured to EAL1, will reduce a password by typically 1 character

But we never use less than a 4-digit PIN
Trading off Passwords and Biometrics

We don’t consider the False Rejection Rate
That’s up to each department or agency to decide what is or is not acceptable

“We’ve replaced one very high but rickety wall with a lower less rickety wall and a moat”

Brian Holman
Thank you for your attention

Further Information

www.cesg.gov.uk
– click on biometrics link

Questions?
Very Rough Password Entropy Estimate

Effect of procedural weakness

Welcome to the Real World!

Bill Burr: william.burr@nist.gov
NIST Knowledge Based Authentication Symposium Feb. 9, 2004