Conversational Biometrics:
Breaking the sound barrier of secure voice applications

Ganesh N. Ramaswamy
Manager, Conversational Biometrics
IBM T. J. Watson Research Center
Yorktown Heights, New York
ganeshr@us.ibm.com
http://www.research.ibm.com/CBG
Conversational Biometrics (CB)

- Combine acoustic (text-independent) voiceprint match with conversational knowledge match for voice-based speaker recognition with high accuracy & flexibility
- Departure from static combination of voiceprint and knowledge
- Single conversational interface consisting of:
 - Acoustic text-independent speaker verification
 - Conversational knowledge verification (speech recognition, natural language understanding, dialog management, text-to-speech synthesis)
 - Programmable policy management
- Distributed architecture with support for “plug-in” engines to include additional authentication modalities
Acoustic Text-Independent Speaker Recognition

Enrollment Phase

- Susan
 - Enrollment Speech
 - Feature Extraction
 - Model Building
 - Voiceprint Models: Susan

- John
 - Enrollment Speech
 - Feature Extraction
 - Model Building
 - Voiceprint Models: John

Recognition Phase

- Claimed Identity: John (for verification only)
 - Test Speech
 - Feature Extraction
 - Model Scoring
 - Decision
 - Impostor Model (for verification only)
Acoustic Text-Independent Speaker Recognition

Modeling

MFCC-ICA-Warped Feature Space

UBM (Plain) → MLLT → MAP → MLLT

Target

Target-xUBM Couple

Scoring

Score Normalization

Sc

T-Norm

N Cohorts

H/Z-Norm params

K-Best Impostor Speakers

Full-Rank A

P(M)

DETAC

P(FA)
Acoustic Text-Independent Speaker Recognition

- Voiceprint enrollment
 - Feature set: Mel-Frequency Cepstral Coefficients (MFCC), ICA, non-linear warping
- Modeling
 - Clustering: LBG/KMeans or Eigenvector-based
 - Grainmodel: Gaussian Mixture Model (GMM), MLLT feature space
 - Multigrain structure: multiple coarseness levels
 - Adaptation from a speaker-independent model
 - Internal HMM phonetic (open-loop) labeling, grammar-based decoding/alignment
- Recognition
 - Likelihood scoring: Pickmax on the GMM-tree
 - Imposter models: UBM, Cohort from BG pool, cohort-discriminative linear transforms
 - Scoring: log-likelihood ratio test, on-the-fly BG score weighting, BG pruning
 - Discriminative model/feature transform (DETAC)
 - Channel norms: adaptive T,Z, and H
 - Confidence scores
Conversational Biometrics (CB)

- Combine acoustic (text-independent) voiceprint match with randomized conversational knowledge verification
 - Single conversational interface for both voiceprint and knowledge verification
 - Verification process managed by a programmable policy manager
Conversational Biometrics (CB) Server Features

- **Acoustic Speaker Verification**
 - Text-independent - no constraints on voice input.
 - Verification & identification on same engine. Scalable to support large population
 - Integrable with conversational applications
 - Multiple operating systems (AIX, Linux, Windows)
 - Multi-device feature (telephony, desktop, etc.)

- **Integrated Conversational Biometrics**
 - Programmable policy management with dynamic verification policies
 - Flexible operation modes: acoustic only, knowledge only & combination
 - Optionally accepts external scores (from alternate authentication modules)
 - Customizable hierarchical topic structure, support for dynamic answers
 - Application independent client-server architecture
 - Stateless ("one-shot") servers
 - Private non-exposed context stored on client side
 - Flexible data access
CB Client-Server Architecture

- CB Client
 - Context
- Network Adapter
- CB Policy Manager
 - Acoustic Verification Engine
 - Knowledge Verification Engine
 - Data Manager
 - Verification Objects Store
 - Verification Policies Store
 - User Models Store
- CB Server
CB Policy Manager

- Departure from static combination of voiceprint and knowledge
- Extremely flexible way to tradeoff convenience and security.
- Broad interpretation of Conversational Biometrics. Accommodates application-specific, transaction-specific & user-specific requirements
- Dynamic combination of multiple authentication modalities: voice, knowledge, caller-id, etc.
 - Manage trade-off between security and convenience, achieving arbitrarily low error rates with combination of multiple verification objects
 - Customizable hierarchy of verification objects, including dynamic objects
 - Support for plug-in engines & external scores from alternate verification engines
 - Incremental authentication, multiple security levels

Components of the policy manager:
- Verification objects (and associated verification engines)
- Verification policies
- User models
CB Policy Manager

- CB policies:
 - FSM implementation using XML.
 - One or more verification challenges at each state
 - Dynamically (random, semi-random, fixed) determined based on current context, transaction requirements and user preferences. Exact or approximate match.
 - Decisions (accept, reject, continue) based on current context
 - Offers complete programming and customization of the verification process

- CB policies operate on the session context:
 - Session context contains: user name, current state within policy, history of verification objects invoked, scores related to invocation, transaction-specific, user-specific and other logical/physical variables
 - Context may include scores from external verification sources
 - Context may also include additional user defined variables
 - Context updated on every turn, rules applied to context resulting in one of three possibilities: accept, reject, or continue
Example Registry of Verification Objects

<object name="DOB"
Engine="Knowledge"
Type="QA"
Prompt="What is your Date of Birth?"
Perplexity="10" /></object>

<object name="CALLER_ID"
Engine="Telephony"
Type="Caller_ID"
Prompt=none
Perplexity="20" /></object>

<object name="VOICE_PRINT"
Engine="Voiceprint"
Prompt=none
Perplexity="1000" /></object>

<object name="COLOR"
Engine="Knowledge"
Type="QA"
Prompt="What is your favorite color?"
Perplexity="5" /></object>

<object name="CAR_COLOR"
Inherit_from="COLOR"
Prompt="What is the color of your car?" /></object>

<object name="CUR_BALANCE"
Engine="Knowledge"
Type="APP_NUM"
Prompt="What is current the approximate balance in your account?"
Perplexity="100" /></object>

<object name="LAST_TRANSACTION_DATE"
Engine="Knowledge"
Type="APP_STR"
Prompt="What is the date of your last transaction??"
Perplexity="100" /></object>
Example User Model

```xml
<UserModel name="JOHN_DOE">
  <Objects>
    <Object name="CALLER_ID">
      Answer="914-945-3000"
      Preference="20"
    </Object>
    <Object name="DOB">
      Answer="08-02-1975"
      Preference="20"
    </Object>
    <Object name="COLOR">
      Answer="blue"
      Preference="10"
    </Object>
    <Object name="CAR_COLOR">
      Answer="red"
      Answer="beige"
      Preference="30"
    </Object>
    <Object name="VOICE_PRINT">
      Filename="john_doe.vpr"
      Preference="30"
    </Object>
    <Object name="CUR_BALANCE"
      Preference="10"
    </Object>
    <Object name="LAST_TRANSACTION_DATE"
      Preference="10"
    </Object>
  </Objects>
</UserModel>
```
Example Policy Specification in XML

```
<policy name="SIMPLE_BASE_POLICY">
  <variables>
    <default var="curBalance" val="1" type="float"></default>
    <default var="minVoiceprintScore" val="0" type="float"></default>
    <default var="lastTransactionDate" val="01-01-2100" type="string"></default>
  </variables>
  <conditions>
    <condition name="ONE_OK" expr="_curObjectName=1 & _curWrongName=0"></condition>
    <condition name="TWO_OK_ONE_BAD" expr="_curObjectName=3 & _curWrongName=1"></condition>
    <condition name="TWO_BAD" expr="_curWrongName=2"></condition>
    <condition name="THREE_OK_ONE_BAD" expr="_curObjectName=4 & _curWrongName=1"></condition>
    <condition name="CUR_BALANCE_TEST" expr="_answerFloat > curBalance * 0.95 & _answerString = lastTransactionDate"></condition>
    <condition name="VOICE_PRINT_TEST" expr="_answerFloat > minVoiceprintScore"></condition>
  </conditions>
  <states>
    <state name="ACCEPT"></state>
    <state name="REJECT"></state>
  </states>
  <state name="START">
    <objects>
      <object name="CALLER_ID" weight="100"></object>
      <object name="DOB" weight="10"></object>
      <object name="CAR_COLOR" weight="10"></object>
    </objects>
    <switch>
      <case condition="ONE_OK" target="ACCOUNT"></case>
      <case condition="TWO_OK_ONE_BAD" target="ACCOUNT"></case>
      <case condition="TWO_BAD" target="REJECT"></case>
    </switch>
  </state>
  <state name="ACCOUNT">
    <objects>
      <object name="VOICE_PRINT" condition="VOICE_PRINT_TEST"></object>
      <object name="CUR_BALANCE" condition="CUR_BALANCE_TEST"></object>
      <object name="LAST_TRANSACTION_DATE" condition="DATE_TEST"></object>
    </objects>
    <switch>
      <case condition="TWO_OK_NO_BAD" target="ACCOUNT"></case>
      <case condition="THREE_OK_ONE_BAD" target="ACCEPT"></case>
      <case condition="TWO_BAD" target="REJECT"></case>
    </switch>
  </state>
</policy>
```
Example CB Policy (1)

```
START
CALLER_ID
DOB
CAR_COLOR

ACCEPT

ACCOUNT
VOICE_PRINT
CUR_BALANCE
LAST_TRANSACTION

REJECT

Two Mismatches

One Match

Two Matches and One Mismatch

Two Matches and No Mismatch

Three Matches and One Mismatch

Two Mismatches
```

Two Mismatches

One Match

Two Matches and One Mismatch

Two Matches and No Mismatch

Three Matches and One Mismatch

Two Mismatches
Example CB Policy (2)

S1: Randomize from personal information
S2: Dynamic object (allow approximate answers)
S3: Randomize from security auxiliary questions
S4: Randomize from personal information

S1T1: Correct answer, very high score
S1T2: Wrong answer, very low score
S1T3: Correct answer, score below very high
 OR Wrong answer, score above very low
S2T1: Less than 2 correct answers, high score
S2T2: 2 or more correct answers, high score
S3T1: Less than 3 wrong answers, high score
S3T2: Less than 3 wrong answers, low score
S3T3: 3 or more wrong answers, high score
S3T4: 3 or more wrong answers, low score
S4T1: less than 2 correct answers, high score
 OR more than 2 correct answers and score between lowTH & medTH
S4T2: 2 or more correct answers, high score
S4T3:less than 2 correct answers and low score OR very low score

Three thresholds: lowTH < medTH < highTH
Example Application: Credit-Card Fraud Prevention

- Conversational Biometrics solution for credit-card fraud & identity theft prevention, fraud analysis, detection of counterfeit cards, detection of frequent fraudsters and mitigation of operational risk
- Requires minimal / no change to existing practices
- Secure and reliable enrollment protocol
 - Voiceprint enrollment: performed at activation of new card issuance
 - Knowledge enrollment: use existing account information
- Verification protocol
 - Automatic authentication of voice-based transactions
 - Selective explicit voice-based authentication for high-risk or unusual (non-voice) transactions
 - Outbound calls for proactive fraud & identity theft prevention
- Online and offline fraud prevention & analysis
 - Integration with existing fraud detection and analysis systems
 - Adds additional input to investigator cases
 - Creation of frequent fraudster databases
Solution Options

- Option 2: Local Install at the bank location
- Options 1 & 3: Distributed client-server implementation
 - Switching through the telephone network (option 1) or through IP network (option 3)
 - Possible hosting of “third-party authentication” services
Policy Management and Error Tradeoff

False Accept

False Reject

Dialog “Complexity”
Why Conversational Biometrics? – Users will not need to change existing habits making adoption faster.

- **Accuracy**
 - Arbitrarily low error with combination of voiceprint & randomized knowledge match
 - Incremental authentication: collect more data for higher confidence
 - Speaker tracking, detect (unauthorized) speaker changes

- **Flexibility**
 - Customizable verification policies
 - Customizable hierarchy of verification objects, including dynamic objects
 - Continuous authentication, background authentication

- **Convenience**
 - Non-intrusive text-independent natural language input, same voice analyzed twice
 - Continuous enrollment: on-line adaptation of acoustic speaker models
 - Qualified identity management to streamline customer service
The Big Picture

Quote from a fortune cookie:
To know the mind of a man, listen to his words