An Overview of Biometrics

Peter T. Higgins
Higgins & Associates, International
202-625-7780
HigginsAssoc@aol.com
Session One

♦ State-of-the Art
 - What are biometrics and how do they work
 - Fingerprint recognition
 - Face recognition
 - Voice recognition
 - Hand recognition
 - Iris recognition
Session Two

♦ Implementation Issues & Challenges
 ■ What biometrics are used for
 ■ Factors that influence the performance
 ■ What are some of the challenges
 ■ Applications for Homeland defense and INS
 ■ The role of biometric standards
What are Biometrics?

♦ Biometrics are automated methods of recognizing a person based on a physiological or behavioral characteristic.

■ *Biometrics Consortium definition*
Key Terms

- **Identify**: Determine if the person is already enrolled in the system.
- **Verify**: Determine if identity claim is true.
- **Automated**: Machine identity decision based on score relative to threshold; **Authorization decision** is **Red** or **Green** based on security, access requirements, and identity.
Key Terms

♦ Best reference for terms:
 - Best Practices in Testing and Reporting Performance of Biometric Devices
What Characteristics?

◆ Physiological:
 - Eye
 - Face
 - Fingerprint
 - Hand

◆ Behavioral:
 - Gait
 - Keystrokes
 - Signature
 - Voice
 - Both

• The Challenge: Biometric samples are never exactly the same as last time they were acquired.
Statistical Underpinnings

♦ Measure differences in samples collected
 ■ Score distribution across a large sample is bi-modal.
 ■ Threshold of closeness is set-dependent based on multiple variables:
 ▷ Technology
 ▷ Purpose of system
 ▷ Degree of cooperation
 ▷ Amount of supervision
 ▷ Target population
Score Distribution
Typical Process Flow

♦ Enrollment
 ■ Voluntary or involuntary
 ■ Token extracted and stored

♦ Subsequent Use
 ■ Supervised or unsupervised
 ■ Cooperative or non-cooperative
 ■ In-use token compared to enrollment token
 ♦ Statistical threshold determines match or not
Performance Characteristics

♦ Threshold driven
 ■ Fixed setting or dynamic setting
 ■ Trade-off between false rejects and false accepts

♦ Metrics used
 ■ Failure to Enroll and Failure to Acquire Rates
 ■ False Reject Rate = False Non-Match Rate
 ■ False Accept Rate = False Match Rate
For each biometric:
- History
- Technology
- Status
- Performance
- Applications
- Sample tokens

Biometrics:
- Fingerprint
- Face
- Voice
- Hand
- Eye
Fingerprints - History

♦ Automation started in 1970s
 - FBI funded R&D
 - RCMP installed first system
♦ 1970s computer performance influenced design
 - Special purpose comparison boards
 - Searches limited to *binned* records
 - Inked cards imaged at central site
Fingerprints - History

♦ Civil applications successfully started in late 1980s
 ♦ Welfare fraud reduction

♦ Early 1990s - 2 key National Programs
 ♦ US & UK
 ♦ Federal R&D investments
 ♦ Update of standards

♦ Desktop applications - late 1990s
Fingerprints - History

♦ Technology and cost breakthroughs in late 1990s
 ■ Single finger scanners
 ◦ Optical, ultrasonic, thermal imaging, capacitive
 ■ Fast PCs
 ◦ Single finger algorithms
 ◦ Smaller repositories
 ■ Permitted broader target audience
 ◦ Replace passwords
 ◦ Support digital signatures, etc
Fingerprints - Technology

- Large Scale AFIS
 - Law enforcement
 - Civil applications
 - Handful of players

- Tactical AFIS
 - Access control
 - Identity verification
 - Hundreds of *players*
Fingerprints - Technology

♦ Capture
 ■ Standards driven
 ■ Quality key to successful comparison
 ■ Flat or rolled impressions
Fingerprints - Technology

♦ Feature extraction
 ■ Minutiae based
 ■ 20 to 100 minutiae per image
 ■ Many attributes per minutiae point
 ♦ X, Y, Theta, type, neighbors, quality, etc.
 ■ 150 to 1,000 bytes per finger
Fingerprints - Technology

- Comparison
 - Drop out areas
 - Rotation
 - Ridge crossings
 - Pattern type
 - Templates stored in memory and compared rapidly
Fingerprints - Technology

♦ Scoring
 ■ Ranked / Dynamic or static threshold

♦ Single finger scanners
 ■ Solid state or optical
 ■ $20 to $33 US per chip set - $60 to $200 US for product with s/w
 ■ 3.3 to 5 v
 ■ Surface mounted, on a mouse, or stand alone
Cost of Securing a Computer with Biometrics

Chart Courtesy of Paul Collier
Fingerprints - Status

♦ Most accurate for large scale identification
♦ Well defined standards
♦ Ten print systems are almost perfect
♦ Many competing algorithms and scanners for desktops
 ■ Minutiae and Correlation based algorithms
Fingerprints - Performance

♦ Single finger systems, best of 3 tries

<table>
<thead>
<tr>
<th>FAR</th>
<th>FRR</th>
<th>Solid State</th>
<th>Optical</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤0.1%</td>
<td>≤2%</td>
<td>≤10%</td>
<td></td>
</tr>
</tbody>
</table>

AFIS Vendors report results that are quite opposite. Algorithm maturity issue?
Fingerprints - Vulnerabilities

♦ Biometrics are susceptible to attack
♦ Two papers on vulnerabilities of fingerprint systems in open literature
 ■ Biometric Fingerprint Recognition – Don’t Get Your Fingers Burned
 ♦ September 2000: Van der Putte an Keuning
 ■ Impact of Artificial “Gummy” Fingers on Fingerprint Systems
 ♦ January 2002: Matsumoto et al
Devices in *Burned Fingers* paper

- Identix TS-250
- Fingermatrix Checkone
- Dermalog DermalogKey
- STMicroelectronics TouchChip
- Veridicon FPS110
- Identicator DFR200

All but one was fooled on first attempt – Fingermatrix took two attempts
Fingerprints - Vulnerabilities

- Devices in *Gummy Fingers* paper:
 - Compaq DRF-200
 - Mitsubishi FPR-DT mkII
 - NEC N7950-41
 - Omron FPS-1000
 - Sony FIU-002-F11
 - Fujitsu FS-200U

- NEC PK-FP02
- Siemens Eval Kit
- Sony FIU 710
- SecuGen SMB-800
- Ethentica MS 3000

Artificial fingerprint enrolment test with live finger verification – the best system was still fooled 65% of the time
Fingerprints - Applications

♦ Low cost verification solutions available to secure PCs
 ■ Networks with 1,000 + users have migrated to fingerprints
 ■ Dramatic help desk savings possible
Fingerprints - Sample Token
Faces - History

♦ 1888 Galton proposed facial comparison
♦ Late 1980s - semi automated
 ■ Ratio based technique
 ♦ Permitted matching independent of image scale
 ♦ Required manual registration of key points
 ■ Based on work in Stanford U. Dissertation
 ■ Intelligence Community funded implementation
♦ DARPA Research in mid 1990s led to commercial products by 1997
Approach
- Image capture (still vs. video)
- Segmentation
- Feature identification & encoding
 - Eigenfaces the core technical underpinning
 - 128 face basis vectors - algorithm computes scalar values in 128 dimension space
- Comparison
 - Sparsely populated 128 dimension space search
Very sensitive to light conditions, orientation, facial expressions, noise in the image, glasses, hair changes, etc.
Verification and surveillance use

Only biometric that *a non-specialist can try to confirm*

Face in the crowd problem being addressed for overt & covert use

DOD competitions and funding of academicians help drive performance
Faces - Performance

<table>
<thead>
<tr>
<th>Conditions</th>
<th>FAR</th>
<th>FRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same day, same illumination</td>
<td>2%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Same day, different illumination</td>
<td>2%</td>
<td>9%</td>
</tr>
<tr>
<td>Difference days</td>
<td>2%</td>
<td>11%</td>
</tr>
<tr>
<td>1.5 years later</td>
<td>2%</td>
<td>43%</td>
</tr>
</tbody>
</table>

NIST Facial Competition run this Summer - initial results to be available in October.
Faces - sample data flow

Detection & Alignment

Recognition & Coding
Voice - History

- Technology is called Speaker Verification or Voice ID
 - Speech recognition technology spin-off
- DOD funding helped drive industry
 - NSA R&D area
 - University and corporate R&D labs
- Late 1980s first companies
 - By 1995 20+ companies including VARs
Voice - Technology

♦ Capture using existing devices
 ■ PC microphone or telephone

♦ Sample ambient noise
 ■ Calibrate capture device

♦ Prompt user
 ■ Predefined utterance or random utterance

♦ Very sensitive to speaker’s stress level and health, length of time since enrolment, time of day, background and electronics noises
Voice - Technology

♦ Extract features
 - Statistical noise reduction
 - Need to balance acoustic parameters:
 ♦ Behavioral patterns
 ♦ Physiology features

♦ Save tokens (one of these ways):
 - Templates
 - Hidden Markov models
 - Neural networks
Voice - Technology

♦ Templates
 ■ Direct acoustic representation of the sound patterns for a known text string

♦ Hidden Markov models
 ■ Statistical information about sound patterns and their statistical variability
 ■ Can support random text strings
 ■ Typically require more sample utterance collection

♦ Neural networks
 ■ Pattern matching
Voice - ID Decisions

♦ Fixed and Dynamic thresholds
 - Random prompted utterances permit more flexibility in scoring
 - Adjustable for high-use enrollees

♦ Cohort Models
 - Can be used in Template and Hidden Markov models
 - At enrollment all *similar* speakers are flagged
 - At verification - compare sample to whole cohort
Voice - Status

♦ In commercial production systems
 ■ Optional log-on feature in Mac OS9
 ■ Home Shopping Network
 ■ Both dropped the technology

♦ Interoperability standards for templates established.
Voice - Performance

<table>
<thead>
<tr>
<th>Conditions</th>
<th>FAR</th>
<th>FRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same # and handset</td>
<td>1%</td>
<td>7%</td>
</tr>
<tr>
<td>Different #, same handset</td>
<td>1%</td>
<td>21%</td>
</tr>
<tr>
<td>Different # and handset</td>
<td>1%</td>
<td>63%</td>
</tr>
</tbody>
</table>
Hands - History

♦ Automation started in late 1980s
 ■ Various competitors introduced:
 ◦ Two finger devices
 ◦ Vein checking
 ◦ Heat sensing

♦ Verification-only devices
Hand - Technology

♦ Two camera system
 ■ Pins guide hand placement
 ■ Images top view and side view
♦ Features extracted
 ■ Finger length, width and features
 ■ Hand thickness profile
♦ Smallest biometric template - 9 to 14 bytes
Hand - Status

- Mass production
- Easy to use
- Single company dominates industry
- Low reject rate at time of use
- Two finger version in use at Disney
Hands - Status

♦ Recognition Systems Unit for time and Attendance
 ■ ~$1,500 US
 ■ Just uses 4 fingers but requires placement of whole hand

♦ Biomet Partners
 ■ ~$400 US for standalone unit

♦ System used for trusted travelers in many countries
Hand - Performance

Error Rates ≤0.5%
Eyes – History

- **Retina**: Back of eye imaging
 - 20 years or more (Paper in 1929)
 - High collection error rate
 - Possible medical - privacy issues
 - New product announcements - little market penetration
Eyes – History

♦ Iris: Eye surface imaging

■ Mid 1990s
 - Sarnoff - NSA - Sensar
 - Patents
 - IriScan - Medical & Dr. Daugman
 - Patents
 - Defense Nuclear Agency
 - Iridian - merger in late 2000
IRIS – Technology

- Near IR cameras to find & capture eye
- Segment eye constituents
 - Sclera, Iris and Pupil
- Perform 192 radial measurements
- Map iris into 256 sectors
- Run 2 transforms on each sector
- Generate and store 256 byte string
IRIS – Technology (Continued)

♦ Can perform identification as well as verification
♦ Very low error rates
♦ Very fast search times
 - Tokens (bit strings) held in RAM
 - Exclusive OR instruction
 - 30% match threshold (Hamming Distance)
♦ Sensitive to certain contact lens styles and possibly eye color
Eyes – Iridian Product

♦ Desktop unit for verification and conference calls
 ■ IR light source in unit
 ■ Two cameras
 ✦ Face acquisition
 ✦ Eye imaging
 ■ Smart card reader for identity claim

♦ Access control unit for doors
IRIS – Status

♦ Cost and unit size decreasing
♦ Very accurate but no large scale use
IRIS – Performance

- No reported false matches
- Few Failure to Match events
- Vulnerabilities
 - Spoof under unsupervised use
 - Mask with special contact lens
Eyes - Sample Token
Questions?
Contact Information

Peter T. Higgins
Higgins & Associates, International
Washington, DC
202-625-7780 (voice)
202-625-7781 (fax)
HigginsAssoc@aol.com (business)
PeterTHiggins@aol.com (personal)